Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking.

blue iLID hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
Elife, 18 Mar 2022 DOI: 10.7554/elife.69229 Link to full text
Abstract: Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)-immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.
2.

Coupling between protrusion dynamics and polarized trafficking steers persistent cell migration.

blue iLID hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 22 Mar 2021 DOI: 10.1101/2021.03.20.436273 Link to full text
Abstract: Migrating cells present a variety of paths, from non-persistent random walks to highly directional trajectories. While random movement can be easily explained by an intrinsic basal activity of the cell, persistent movement requires the cell to be stably polarized. It remains unclear how this is achieved from the regulation of underlying subcellular processes. In the context of mesenchymal migration, the ability of cells to migrate persistently over several hours require a mechanism stabilizing their protruding activity at their front. Here, we address this mechanism using human RPE1 cell line as our model. We measure, manipulate, and quantitatively perturb cell protrusive activity of the cortex as well as intracellular organization of the endomembrane trafficking system using dynamic micropatterning, pharmacological and trafficking assays, optogenetics and live-cell imaging with tracking. First, we demonstrate that the Nucleus-Golgi axis aligns with the direction of migration and its alignment with the protrusive activity leads to efficient cell movement. Then, using low doses of Nocodazole to disrupt internal cell organization, we show that long-lived polarity breaks down and migration becomes random. Next, we indicate that a flow of vesicles is directed towards the protrusive activity with a delay of 20 min. Eventually, by applying a sustained optogenetic activation, we prove that a localized Cdc42 gradient is able to orient the Nucleus-Golgi axis over a couple of hours. Taken together, our results suggest that the internal polarity axis, provided by the polarized trafficking of vesicles, is stabilizing the protrusive activity of the cell, while the protrusive activity biases this polarity axis. Using a novel minimal physical model, we show that this feedback is sufficient by itself to recapitulate the quantitative properties of cell migration in the timescale of hours. Our work highlights the importance of the coupling between high-level cellular functions in stabilizing the direction of migration over long timescales.
Submit a new publication to our database